Most of the hard work is done (I think). However Im not really liking the way it interpolates. Ultimately Im aiming to replicate this effect from this site —> Degirum — Edge AI Development Simplified (videinfra.com). You see how it interpolates so nicely!
Here is what I have so far Document (frolicking-froyo-424ce7.netlify.app) The shader code is below.
const rawMaterial = new THREE.RawShaderMaterial({
uniforms: {
time: {
value: 0.0
},
u_time: {
value: 0.0
},
u_speed: {
value: .3
},
u_intensity: {
value: 0.15
},
u_partical_size: {
value: .1
},
u_sphere_vertices: {
value: sphereGeo.attributes.position.array,
},
u_interpolate: {
value: 1.0,
},
},
vertexShader: `
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
precision mediump float;
precision mediump int;
uniform mat4 modelViewMatrix; // optional
uniform mat4 projectionMatrix; // optional
uniform float time;
uniform vec3 u_sphere_vertices;
attribute vec3 position;
attribute vec4 color;
attribute vec3 spherePos;
varying vec3 vPosition;
varying vec4 vColor;
uniform float u_time;
uniform float u_speed;
uniform float u_intensity;
uniform float u_partical_size;
uniform float u_interpolate;
uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform vec3 u_color_a;
varying vec2 v_uv;
varying float v_displacement;
void main() {
//Interpolate between the Plane Vertices and the Sphere Vertices
vec3 interpPos = mix(position, spherePos, u_interpolate );
v_displacement = cnoise(interpPos + vec3(time * u_speed));
v_displacement = v_displacement * u_intensity;
vec3 interNoisePos = interpPos + (v_displacement);
vec4 modelPosition = modelMatrix * vec4(interNoisePos, 1.0);
vec4 viewPosition = viewMatrix * modelPosition;
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
gl_PointSize = u_partical_size * (1.0 / - viewPosition.z);
}`,
fragmentShader: `
precision mediump float;
precision mediump int;
uniform float time;
varying vec3 vPosition;
varying vec4 vColor;
void main() {
gl_FragColor = vec4(1.0, .5, 0.0, .5);
}`,
side: THREE.DoubleSide,
transparent: true,
wireframe: true
})