Interpolate Plane to Sphere Effect with Vertex Shader

Most of the hard work is done (I think). However Im not really liking the way it interpolates. Ultimately Im aiming to replicate this effect from this site —> Degirum — Edge AI Development Simplified (videinfra.com). You see how it interpolates so nicely!

Here is what I have so far Document (frolicking-froyo-424ce7.netlify.app) The shader code is below.

const rawMaterial = new THREE.RawShaderMaterial({

    uniforms: {
        time: {
            value: 0.0
        },
        u_time: {
            value: 0.0
        },
        u_speed: {
            value: .3
        },
        u_intensity: {
            value: 0.15
        },
        u_partical_size: {
            value: .1
        },
        u_sphere_vertices: {
            value: sphereGeo.attributes.position.array,
        },
        u_interpolate: {
            value: 1.0,
        },
    },
    vertexShader: `       
  vec3 mod289(vec3 x)
  {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 mod289(vec4 x)
  {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 permute(vec4 x)
  {
    return mod289(((x*34.0)+1.0)*x);
  }

  vec4 taylorInvSqrt(vec4 r)
  {
    return 1.79284291400159 - 0.85373472095314 * r;
  }

  vec3 fade(vec3 t) {
    return t*t*t*(t*(t*6.0-15.0)+10.0);
  }

  // Classic Perlin noise
  float cnoise(vec3 P)
  {
    vec3 Pi0 = floor(P); // Integer part for indexing
    vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);

    vec3 fade_xyz = fade(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
    return 2.2 * n_xyz;
  }

    precision mediump float;
    precision mediump int;

    uniform mat4 modelViewMatrix; // optional
    uniform mat4 projectionMatrix; // optional
    uniform float time;
    uniform vec3 u_sphere_vertices;
    attribute vec3 position;
    attribute vec4 color;
    attribute vec3 spherePos;

    varying vec3 vPosition;
    varying vec4 vColor;
    
    uniform float u_time;
    uniform float u_speed;
    uniform float u_intensity;
    uniform float u_partical_size;
    uniform float u_interpolate;
    uniform mat4 modelMatrix;
    uniform mat4 viewMatrix;
    uniform vec3 u_color_a;
    varying vec2 v_uv;
    varying float v_displacement;
    
    void main()	{

        //Interpolate between the Plane Vertices and the Sphere Vertices 
        vec3 interpPos = mix(position, spherePos, u_interpolate );
        
        v_displacement = cnoise(interpPos + vec3(time * u_speed));
        v_displacement = v_displacement * u_intensity;
        vec3 interNoisePos = interpPos +  (v_displacement);
        

        vec4 modelPosition = modelMatrix * vec4(interNoisePos, 1.0);
        vec4 viewPosition = viewMatrix * modelPosition;
        vec4 projectedPosition = projectionMatrix * viewPosition;     

        gl_Position = projectedPosition;
        gl_PointSize = u_partical_size * (1.0 / - viewPosition.z);
        }`,

    fragmentShader: `    
        precision mediump float;
        precision mediump int;

        uniform float time;

        varying vec3 vPosition;
        varying vec4 vColor;

        void main()	{

            gl_FragColor = vec4(1.0, .5, 0.0, .5);
        }`,
    side: THREE.DoubleSide,
    transparent: true,
    wireframe: true
})

Tried it with modified PointsMaterial:

Demo: https://codepen.io/prisoner849/full/wvNqYNm

5 Likes

Dynamite. Looks amazing thanks very much!