Hi Michael.
For people interested in this very old format, I have given support for LineSegments and Points and also fixed the color bug issue.
I am not used with PRs,if you want to test the code and validate, feel free to use it.
Here the code:
/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.VRMLLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.VRMLLoader.prototype = {
constructor: THREE.VRMLLoader,
// for IndexedFaceSet support
isRecordingPoints: false,
isRecordingFaces: false,
points: [],
indexes: [],
// for Background support
isRecordingAngles: false,
isRecordingColors: false,
angles: [],
colors: [],
recordingFieldname: null,
crossOrigin: 'anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === undefined ) ? THREE.LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new THREE.FileLoader( this.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
onLoad( scope.parse( text, path ) );
}, onProgress, onError );
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResourcePath: function ( value ) {
this.resourcePath = value;
return this;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
parse: function ( data, path ) {
var scope = this;
var textureLoader = new THREE.TextureLoader( this.manager );
textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
function parseV2( lines, scene ) {
var defines = {};
var float_pattern = /(\b|\-|\+)([\d\.e]+)/;
var float2_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
var float3_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
/**
* Vertically paints the faces interpolating between the
* specified colors at the specified angels. This is used for the Background
* node, but could be applied to other nodes with multiple faces as well.
*
* When used with the Background node, default is directionIsDown is true if
* interpolating the skyColor down from the Zenith. When interpolationg up from
* the Nadir i.e. interpolating the groundColor, the directionIsDown is false.
*
* The first angle is never specified, it is the Zenith (0 rad). Angles are specified
* in radians. The geometry is thought a sphere, but could be anything. The color interpolation
* is linear along the Y axis in any case.
*
* You must specify one more color than you have angles at the beginning of the colors array.
* This is the color of the Zenith (the top of the shape).
*
* @param geometry
* @param radius
* @param angles
* @param colors
* @param boolean topDown Whether to work top down or bottom up.
*/
function paintFaces( geometry, radius, angles, colors, topDown ) {
var direction = ( topDown === true ) ? 1 : - 1;
var coord = [], A = {}, B = {}, applyColor = false;
for ( var k = 0; k < angles.length; k ++ ) {
// push the vector at which the color changes
var vec = {
x: direction * ( Math.cos( angles[ k ] ) * radius ),
y: direction * ( Math.sin( angles[ k ] ) * radius )
};
coord.push( vec );
}
var index = geometry.index;
var positionAttribute = geometry.attributes.position;
var colorAttribute = new THREE.BufferAttribute( new Float32Array( geometry.attributes.position.count * 3 ), 3 );
var position = new THREE.Vector3();
var color = new THREE.Color();
for ( var i = 0; i < index.count; i ++ ) {
var vertexIndex = index.getX( i );
position.fromBufferAttribute( positionAttribute, vertexIndex );
for ( var j = 0; j < colors.length; j ++ ) {
// linear interpolation between aColor and bColor, calculate proportion
// A is previous point (angle)
if ( j === 0 ) {
A.x = 0;
A.y = ( topDown === true ) ? radius : - 1 * radius;
} else {
A.x = coord[ j - 1 ].x;
A.y = coord[ j - 1 ].y;
}
// B is current point (angle)
B = coord[ j ];
if ( B !== undefined ) {
// p has to be between the points A and B which we interpolate
applyColor = ( topDown === true ) ? ( position.y <= A.y && position.y > B.y ) : ( position.y >= A.y && position.y < B.y );
if ( applyColor === true ) {
var aColor = colors[ j ];
var bColor = colors[ j + 1 ];
// below is simple linear interpolation
var t = Math.abs( position.y - A.y ) / ( A.y - B.y );
// to make it faster, you can only calculate this if the y coord changes, the color is the same for points with the same y
color.copy( aColor ).lerp( bColor, t );
colorAttribute.setXYZ( vertexIndex, color.r, color.g, color.b );
} else {
var colorIndex = ( topDown === true ) ? colors.length - 1 : 0;
var c = colors[ colorIndex ];
colorAttribute.setXYZ( vertexIndex, c.r, c.g, c.b );
}
}
}
}
geometry.addAttribute( 'color', colorAttribute );
}
var index = [];
function parseProperty( node, line ) {
var parts = [], part, property = {}, fieldName;
/**
* Expression for matching relevant information, such as a name or value, but not the separators
* @type {RegExp}
*/
var regex = /[^\s,\[\]]+/g;
var point;
while ( null !== ( part = regex.exec( line ) ) ) {
parts.push( part[ 0 ] );
}
fieldName = parts[ 0 ];
// trigger several recorders
switch ( fieldName ) {
case 'skyAngle':
case 'groundAngle':
scope.recordingFieldname = fieldName;
scope.isRecordingAngles = true;
scope.angles = [];
break;
case 'color':
case 'skyColor':
case 'groundColor':
scope.recordingFieldname = fieldName;
scope.isRecordingColors = true;
scope.colors = [];
break;
case 'point':
case 'vector':
scope.recordingFieldname = fieldName;
scope.isRecordingPoints = true;
scope.points = [];
break;
case 'colorIndex':
case 'coordIndex':
case 'normalIndex':
case 'texCoordIndex':
scope.recordingFieldname = fieldName;
scope.isRecordingFaces = true;
scope.indexes = [];
break;
}
if ( scope.isRecordingFaces ) {
// the parts hold the indexes as strings
if ( parts.length > 0 ) {
for ( var ind = 0; ind < parts.length; ind ++ ) {
// the part should either be positive integer or -1
if ( ! /(-?\d+)/.test( parts[ ind ] ) ) {
continue;
}
// end of current face
if ( parts[ ind ] === '-1' ) {
if ( index.length > 0 ) {
scope.indexes.push( index );
}
// start new one
index = [];
} else {
index.push( parseInt( parts[ ind ] ) );
}
}
}
// end
if ( /]/.exec( line ) ) {
if ( index.length > 0 ) {
scope.indexes.push( index );
}
// start new one
index = [];
scope.isRecordingFaces = false;
node[ scope.recordingFieldname ] = scope.indexes;
}
} else if ( scope.isRecordingPoints ) {
if ( node.nodeType == 'Coordinate' ) {
while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
point = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] )
};
scope.points.push( point );
}
}
if ( node.nodeType == 'Normal' ) {
while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
point = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] )
};
scope.points.push( point );
}
}
if ( node.nodeType == 'TextureCoordinate' ) {
while ( null !== ( parts = float2_pattern.exec( line ) ) ) {
point = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] )
};
scope.points.push( point );
}
}
// end
if ( /]/.exec( line ) ) {
scope.isRecordingPoints = false;
node.points = scope.points;
}
} else if ( scope.isRecordingAngles ) {
// the parts hold the angles as strings
if ( parts.length > 0 ) {
for ( var ind = 0; ind < parts.length; ind ++ ) {
// the part should be a float
if ( ! float_pattern.test( parts[ ind ] ) ) {
continue;
}
scope.angles.push( parseFloat( parts[ ind ] ) );
}
}
// end
if ( /]/.exec( line ) ) {
scope.isRecordingAngles = false;
node[ scope.recordingFieldname ] = scope.angles;
}
} else if ( scope.isRecordingColors ) {
while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
var color = {
r: parseFloat( parts[ 1 ] ),
g: parseFloat( parts[ 2 ] ),
b: parseFloat( parts[ 3 ] )
};
scope.colors.push( color );
}
// end
if ( /]/.exec( line ) ) {
scope.isRecordingColors = false;
node[ scope.recordingFieldname ] = scope.colors;
}
} else if ( parts[ parts.length - 1 ] !== 'NULL' && fieldName !== 'children' ) {
switch ( fieldName ) {
case 'diffuseColor':
case 'emissiveColor':
case 'specularColor':
case 'color':
if ( parts.length !== 4 ) {
console.warn( 'THREE.VRMLLoader: Invalid color format detected for %s.', fieldName );
break;
}
property = {
r: parseFloat( parts[ 1 ] ),
g: parseFloat( parts[ 2 ] ),
b: parseFloat( parts[ 3 ] )
};
break;
case 'location':
case 'direction':
case 'translation':
case 'scale':
case 'size':
if ( parts.length !== 4 ) {
console.warn( 'THREE.VRMLLoader: Invalid vector format detected for %s.', fieldName );
break;
}
property = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] )
};
break;
case 'intensity':
case 'cutOffAngle':
case 'radius':
case 'topRadius':
case 'bottomRadius':
case 'height':
case 'transparency':
case 'shininess':
case 'ambientIntensity':
case 'creaseAngle':
if ( parts.length !== 2 ) {
console.warn( 'THREE.VRMLLoader: Invalid single float value specification detected for %s.', fieldName );
break;
}
property = parseFloat( parts[ 1 ] );
break;
case 'rotation':
if ( parts.length !== 5 ) {
console.warn( 'THREE.VRMLLoader: Invalid quaternion format detected for %s.', fieldName );
break;
}
property = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] ),
w: parseFloat( parts[ 4 ] )
};
break;
case 'on':
case 'ccw':
case 'solid':
case 'colorPerVertex':
case 'convex':
if ( parts.length !== 2 ) {
console.warn( 'THREE.VRMLLoader: Invalid format detected for %s.', fieldName );
break;
}
property = parts[ 1 ] === 'TRUE' ? true : false;
break;
}
// VRMLLoader does not support text so it can't process the "string" property yet
if ( fieldName !== 'string' ) node[ fieldName ] = property;
}
return property;
}
function iterationCopy(src) {
let target = {};
for (let prop in src) {
if (src.hasOwnProperty(prop)) {
target[prop] = src[prop];
}
}
return target;
}
function getTree( lines ) {
var materialArray = [];
//console.log("lines: " , lines);
var tree = { 'string': 'Scene', children: [] };
var current = tree;
var matches;
var specification;
for ( var i = 0; i < lines.length; i ++ ) {
var comment = '';
var line = lines[ i ];
// omit whitespace only lines
if ( null !== ( /^\s+?$/g.exec( line ) ) ) {
continue;
}
line = line.trim();
// skip empty lines
if ( line === '' ) {
continue;
}
if ( /#/.exec( line ) ) {
var parts = line.split( '#' );
// discard everything after the #, it is a comment
line = parts[ 0 ];
// well, let's also keep the comment
comment = parts[ 1 ];
}
if ( matches = /([^\s]*){1}(?:\s+)?{/.exec( line ) ) {
// first subpattern should match the Node name
var block = { 'nodeType': matches[ 1 ], 'string': line, 'parent': current, 'children': [], 'comment': comment };
if (block != undefined) {
if (block.nodeType == "Material") {
//console.log("block1", block);
var materialName = block.string.split(' ')[2];
block.name = materialName;
var materialClone = {};
for (var prop in block) {
if (prop != "parent"){
materialClone[prop] = block[prop];
}
}
//materialClone.name = materialName;
materialArray[materialName] = materialClone;
}
}
current.children.push( block );
current = block;
if ( /}/.exec( line ) ) {
// example: geometry Box { size 1 1 1 } # all on the same line
specification = /{(.*)}/.exec( line )[ 1 ];
// todo: remove once new parsing is complete?
block.children.push( specification );
parseProperty( current, specification );
current = current.parent;
}
} else if ( /}/.exec( line ) ) {
current = current.parent;
} else if ( matches = /USE/.exec( line ) ) {
//console.log("matches" , matches);
var block = { 'nodeType': matches[ 1 ], 'string': line, 'parent': current, 'children': [], 'comment': comment };
var parent = block.parent;
var materialName = block.string.split(' ')[2];
block = materialArray[materialName];
block.parent = current;
//console.log("block2", block);
for (idx=0; idx<block.children.length; idx++) {
var parts = block.children[idx].replace(/ +/g, ' ').split(' ');
var prop = parts[0];
//console.log("prop: ", prop, "; parts: ", parts);
switch (prop) {
case 'diffuseColor':
case 'emissiveColor':
case 'specularColor':
case 'color':
if ( parts.length !== 4 ) {
console.warn( '1.- THREE.VRMLLoader: Invalid color format detected');
break;
}
var property = {
r: parseFloat( parts[ 1 ] ),
g: parseFloat( parts[ 2 ] ),
b: parseFloat( parts[ 3 ] )
};
block[prop] = property;
break;
case 'intensity':
case 'transparency':
case 'shininess':
case 'ambientIntensity':
if ( parts.length !== 2 ) {
console.warn( '2.- THREE.VRMLLoader: Invalid single float value specification detected' );
break;
}
property = parseFloat( parts[ 1 ] );
block[prop] = property;
break;
}
}
current.children.push( block );
//console.log("block3", block);
} else if ( line !== '' ) {
//console.log("line:", line);
parseProperty( current, line );
// todo: remove once new parsing is complete? we still do not parse geometry and appearance the new way
current.children.push( line );
}
}
//console.log("tree: " , tree);
return tree;
}
function parseNode( data, parent ) {
var object;
if ( typeof data === 'string' ) {
if ( /USE/.exec( data ) ) {
var defineKey = /USE\s+?([^\s]+)/.exec( data )[ 1 ];
if ( undefined == defines[ defineKey ] ) {
console.warn( 'THREE.VRMLLoader: %s is not defined.', defineKey );
} else {
if ( /appearance/.exec( data ) && defineKey ) {
parent.material = defines[ defineKey ].clone();
} else if ( /geometry/.exec( data ) && defineKey ) {
parent.geometry = defines[ defineKey ].clone();
// the solid property is not cloned with clone(), is only needed for VRML loading, so we need to transfer it
if ( defines[ defineKey ].solid !== undefined && defines[ defineKey ].solid === false ) {
parent.geometry.solid = false;
parent.material.side = THREE.DoubleSide;
}
} else if ( defineKey ) {
object = defines[ defineKey ].clone();
parent.add( object );
}
}
}
return;
}
object = parent;
//if ( data.string.indexOf( 'AmbientLight' ) > - 1 && data.nodeType === 'PointLight' ) {
//
// data.nodeType = 'AmbientLight';
//
//}
var l_visible = data.on !== undefined ? data.on : true;
var l_intensity = data.intensity !== undefined ? data.intensity : 1;
var l_color = new THREE.Color();
if ( data.color ) {
l_color.copy( data.color );
}
//if ( data.nodeType === 'AmbientLight' ) {
//
// object = new THREE.AmbientLight( l_color, l_intensity );
// object.visible = l_visible;
//
// parent.add( object );
//
//} else if ( data.nodeType === 'PointLight' ) {
//
// var l_distance = 0;
//
// if ( data.radius !== undefined && data.radius < 1000 ) {
//
// l_distance = data.radius;
//
// }
//
// object = new THREE.PointLight( l_color, l_intensity, l_distance );
// object.visible = l_visible;
//
// parent.add( object );
//
//} else if ( data.nodeType === 'SpotLight' ) {
//
// var l_intensity = 1;
// var l_distance = 0;
// var l_angle = Math.PI / 3;
// var l_penumbra = 0;
// var l_visible = true;
//
// if ( data.radius !== undefined && data.radius < 1000 ) {
//
// l_distance = data.radius;
//
// }
//
// if ( data.cutOffAngle !== undefined ) {
//
// l_angle = data.cutOffAngle;
//
// }
//
// object = new THREE.SpotLight( l_color, l_intensity, l_distance, l_angle, l_penumbra );
// object.visible = l_visible;
//
// parent.add( object );
//} else
if ( data.nodeType === 'Transform' || data.nodeType === 'Group' ) {
object = new THREE.Object3D();
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
if ( data.translation !== undefined ) {
var t = data.translation;
object.position.set( t.x, t.y, t.z );
}
if ( data.rotation !== undefined ) {
var r = data.rotation;
object.quaternion.setFromAxisAngle( new THREE.Vector3( r.x, r.y, r.z ), r.w );
}
if ( data.scale !== undefined ) {
var s = data.scale;
object.scale.set( s.x, s.y, s.z );
}
parent.add( object );
} else if ( data.nodeType === 'Shape' ) {
//object = new THREE.Mesh();
if (data.children[1] != undefined) {
switch (data.children[1].nodeType) {
case "IndexedFaceSet":
object = new THREE.Mesh();
break;
case "IndexedLineSet":
object = new THREE.LineSegments();
break;
case "PointSet":
object = new THREE.Points();
break;
}
}
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
parent.add( object );
//} else if ( data.nodeType === 'Background' ) {
//
// var segments = 20;
//
// // sky (full sphere):
//
// var radius = 2e4;
//
// var skyGeometry = new THREE.SphereBufferGeometry( radius, segments, segments );
// var skyMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide } );
//
// if ( data.skyColor.length > 1 ) {
//
// paintFaces( skyGeometry, radius, data.skyAngle, data.skyColor, true );
//
// skyMaterial.vertexColors = THREE.VertexColors;
//
// } else {
//
// var color = data.skyColor[ 0 ];
// skyMaterial.color.setRGB( color.r, color.b, color.g );
//
// }
//
// scene.add( new THREE.Mesh( skyGeometry, skyMaterial ) );
//
// // ground (half sphere):
//
// if ( data.groundColor !== undefined ) {
//
// radius = 1.2e4;
//
// var groundGeometry = new THREE.SphereBufferGeometry( radius, segments, segments, 0, 2 * Math.PI, 0.5 * Math.PI, 1.5 * Math.PI );
// var groundMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide, vertexColors: THREE.VertexColors } );
//
// paintFaces( groundGeometry, radius, data.groundAngle, data.groundColor, false );
//
// scene.add( new THREE.Mesh( groundGeometry, groundMaterial ) );
//
// }
} else if ( /geometry/.exec( data.string ) ) {
if ( data.nodeType === 'Box' ) {
var s = data.size;
parent.geometry = new THREE.BoxBufferGeometry( s.x, s.y, s.z );
} else if ( data.nodeType === 'Cylinder' ) {
parent.geometry = new THREE.CylinderBufferGeometry( data.radius, data.radius, data.height );
} else if ( data.nodeType === 'Cone' ) {
parent.geometry = new THREE.CylinderBufferGeometry( data.topRadius, data.bottomRadius, data.height );
} else if ( data.nodeType === 'Sphere' ) {
parent.geometry = new THREE.SphereBufferGeometry( data.radius );
} else if ( data.nodeType === 'IndexedLineSet' ) {
var geometry = new THREE.BufferGeometry();
var positions = [];
var position1, position2;
var i, il, j, jl;
for ( i = 0, il = data.children.length; i < il; i ++ ) {
var child = data.children[ i ];
// positions
if ( child.nodeType === 'Coordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl-1; j ++ ) {
position1 = child.points[ j ];
position2 = child.points[ j+1 ];
positions.push( position1.x, position1.y, position1.z );
positions.push( position2.x, position2.y, position2.z );
}
}
if ( child.string.indexOf( 'DEF' ) > - 1 ) {
var name = /DEF\s+([^\s]+)/.exec( child.string )[ 1 ];
defines[ name ] = positions.slice( 0 );
//console.log("defines[ name ] 1", defines[ name ]);
}
if ( child.string.indexOf( 'USE' ) > - 1 ) {
var defineKey = /USE\s+([^\s]+)/.exec( child.string )[ 1 ];
positions = defines[ defineKey ];
//console.log("defines[ defineKey ] 1", defines[ defineKey ]);
}
}
}
if ( data.coordIndex == undefined) {
// do not add dummy mesh to the scene
parent.parent.remove( parent );
}
if ( false === data.solid ) {
parent.material.side = THREE.DoubleSide;
}
// we need to store it on the geometry for use with defines
geometry.solid = data.solid;
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( positions, 3 ) );
geometry.computeVertexNormals();
geometry.computeBoundingSphere();
// see if it's a define
if ( /DEF/.exec( data.string ) ) {
geometry.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
defines[ geometry.name ] = geometry;
//console.log("geometry 3: " , geometry);
}
parent.geometry = geometry;
} else if ( data.nodeType === 'Text' ) {
console.warn( 'THREE.VRMLLoader: Text not supported yet.' );
parent.parent.remove( parent );
} else if ( data.nodeType === 'IndexedFaceSet' ) {
var geometry = new THREE.BufferGeometry();
var positions = [];
var colors = [];
var normals = [];
var uvs = [];
var position, color, normal, uv;
var i, il, j, jl;
for ( i = 0, il = data.children.length; i < il; i ++ ) {
var child = data.children[ i ];
// uvs
if ( child.nodeType === 'TextureCoordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
uv = child.points[ j ];
uvs.push( uv.x, uv.y );
}
}
}
// normals
if ( child.nodeType === 'Normal' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
normal = child.points[ j ];
normals.push( normal.x, normal.y, normal.z );
}
}
}
// colors
if ( child.nodeType === 'Color' ) {
if ( child.color ) {
for ( j = 0, jl = child.color.length; j < jl; j ++ ) {
color = child.color[ j ];
colors.push( color.r, color.g, color.b );
}
}
}
// positions
if ( child.nodeType === 'Coordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
position = child.points[ j ];
positions.push( position.x, position.y, position.z );
}
}
if ( child.string.indexOf( 'DEF' ) > - 1 ) {
var name = /DEF\s+([^\s]+)/.exec( child.string )[ 1 ];
defines[ name ] = positions.slice( 0 );
}
if ( child.string.indexOf( 'USE' ) > - 1 ) {
var defineKey = /USE\s+([^\s]+)/.exec( child.string )[ 1 ];
positions = defines[ defineKey ];
}
}
}
// some shapes only have vertices for use in other shapes
if ( data.coordIndex ) {
function triangulateIndexArray( indexArray, ccw, colorPerVertex ) {
if ( ccw === undefined ) {
// ccw is true by default
ccw = true;
}
var triangulatedIndexArray = [];
var skip = 0;
for ( i = 0, il = indexArray.length; i < il; i ++ ) {
if ( colorPerVertex === false ) {
var colorIndices = indexArray[ i ];
for ( j = 0, jl = colorIndices.length; j < jl; j ++ ) {
var index = colorIndices[ j ];
triangulatedIndexArray.push( index, index, index );
}
} else {
var indexedFace = indexArray[ i ];
// VRML support multipoint indexed face sets (more then 3 vertices). You must calculate the composing triangles here
skip = 0;
while ( indexedFace.length >= 3 && skip < ( indexedFace.length - 2 ) ) {
var i1 = indexedFace[ 0 ];
var i2 = indexedFace[ skip + ( ccw ? 1 : 2 ) ];
var i3 = indexedFace[ skip + ( ccw ? 2 : 1 ) ];
triangulatedIndexArray.push( i1, i2, i3 );
skip ++;
}
}
}
return triangulatedIndexArray;
}
var positionIndexes = data.coordIndex ? triangulateIndexArray( data.coordIndex, data.ccw ) : [];
var normalIndexes = data.normalIndex ? triangulateIndexArray( data.normalIndex, data.ccw ) : positionIndexes;
var colorIndexes = data.colorIndex ? triangulateIndexArray( data.colorIndex, data.ccw, data.colorPerVertex ) : [];
var uvIndexes = data.texCoordIndex ? triangulateIndexArray( data.texCoordIndex, data.ccw ) : positionIndexes;
var newIndexes = [];
var newPositions = [];
var newNormals = [];
var newColors = [];
var newUvs = [];
// if any other index array does not match the coordinate indexes, split any points that differ
var pointMap = Object.create( null );
for ( i = 0; i < positionIndexes.length; i ++ ) {
var pointAttributes = [];
var positionIndex = positionIndexes[ i ];
var normalIndex = normalIndexes[ i ];
var colorIndex = colorIndexes[ i ];
var uvIndex = uvIndexes[ i ];
var base = 10; // which base to use to represent each value
pointAttributes.push( positionIndex.toString( base ) );
if ( normalIndex !== undefined ) {
pointAttributes.push( normalIndex.toString( base ) );
}
if ( colorIndex !== undefined ) {
pointAttributes.push( colorIndex.toString( base ) );
}
if ( uvIndex !== undefined ) {
pointAttributes.push( uvIndex.toString( base ) );
}
var pointId = pointAttributes.join( ',' );
var newIndex = pointMap[ pointId ];
if ( newIndex === undefined ) {
newIndex = newPositions.length / 3;
pointMap[ pointId ] = newIndex;
newPositions.push(
positions[ positionIndex * 3 ],
positions[ positionIndex * 3 + 1 ],
positions[ positionIndex * 3 + 2 ]
);
if ( normalIndex !== undefined && normals.length > 0 ) {
newNormals.push(
normals[ normalIndex * 3 ],
normals[ normalIndex * 3 + 1 ],
normals[ normalIndex * 3 + 2 ]
);
}
if ( colorIndex !== undefined && colors.length > 0 ) {
newColors.push(
colors[ colorIndex * 3 ],
colors[ colorIndex * 3 + 1 ],
colors[ colorIndex * 3 + 2 ]
);
}
if ( uvIndex !== undefined && uvs.length > 0 ) {
newUvs.push(
uvs[ uvIndex * 2 ],
uvs[ uvIndex * 2 + 1 ]
);
}
}
newIndexes.push( newIndex );
}
positions = newPositions;
normals = newNormals;
colors = newColors;
uvs = newUvs;
geometry.setIndex( newIndexes );
} else {
// do not add dummy mesh to the scene
parent.parent.remove( parent );
}
if ( false === data.solid ) {
parent.material.side = THREE.DoubleSide;
}
// we need to store it on the geometry for use with defines
geometry.solid = data.solid;
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( positions, 3 ) );
if ( colors.length > 0 ) {
geometry.addAttribute( 'color', new THREE.Float32BufferAttribute( colors, 3 ) );
parent.material.vertexColors = THREE.VertexColors;
}
if ( uvs.length > 0 ) {
geometry.addAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );
}
if ( normals.length > 0 ) {
geometry.addAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );
} else {
// convert geometry to non-indexed to get sharp normals
geometry = geometry.toNonIndexed();
geometry.computeVertexNormals();
}
geometry.computeBoundingSphere();
// see if it's a define
if ( /DEF/.exec( data.string ) ) {
geometry.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
defines[ geometry.name ] = geometry;
}
parent.geometry = geometry;
} else if ( data.nodeType === 'PointSet' ) {
var geometry = new THREE.BufferGeometry();
var positions = [];
var position;
var i, il, j, jl;
for ( i = 0, il = data.children.length; i < il; i ++ ) {
var child = data.children[ i ];
// positions
if ( child.nodeType === 'Coordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
position = child.points[ j ];
positions.push( position.x, position.y, position.z );
}
}
if ( child.string.indexOf( 'DEF' ) > - 1 ) {
var name = /DEF\s+([^\s]+)/.exec( child.string )[ 1 ];
defines[ name ] = positions.slice( 0 );
//console.log("defines[ name ] 4: ", defines[ name ]);
}
if ( child.string.indexOf( 'USE' ) > - 1 ) {
var defineKey = /USE\s+([^\s]+)/.exec( child.string )[ 1 ];
positions = defines[ defineKey ];
//console.log("defines[ name ] 5: ", defines[ name ]);
}
}
}
if ( false === data.solid ) {
parent.material.side = THREE.DoubleSide;
}
// we need to store it on the geometry for use with defines
geometry.solid = data.solid;
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( positions, 3 ) );
geometry.computeBoundingSphere();
// see if it's a define
if ( /DEF/.exec( data.string ) ) {
geometry.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
defines[ geometry.name ] = geometry;
//console.log("geometry 5: " , geometry);
}
parent.geometry = geometry;
}
return;
} else if ( /appearance/.exec( data.string ) ) {
//console.log("data", data);
for ( var i = 0; i < data.children.length; i ++ ) {
var child = data.children[ i ];
if ( child.nodeType === 'Material' ) {
//console.log(child);
var material = new THREE.MeshStandardMaterial();
if ( child.name !== undefined ) {
material.name = child.name
}
if ( child.diffuseColor !== undefined ) {
var d = child.diffuseColor;
material.color.setRGB( d.r, d.g, d.b );
material.emissive.setRGB( d.r, d.g, d.b )
}
if ( child.emissiveColor !== undefined ) {
var e = child.emissiveColor;
material.emissive.setRGB( e.r, e.g, e.b );
material.color.setRGB( e.r, e.g, e.b );
}
if ( child.transparency !== undefined ) {
var t = child.transparency;
material.opacity = Math.abs( 1 - t );
material.transparent = true;
}
//console.log(material);
//var material = new THREE.MeshPhongMaterial();
//
//if ( child.diffuseColor !== undefined ) {
//
// var d = child.diffuseColor;
//
// material.color.setRGB( d.r, d.g, d.b );
//
//}
//
//if ( child.emissiveColor !== undefined ) {
//
// var e = child.emissiveColor;
//
// material.emissive.setRGB( e.r, e.g, e.b );
//
//}
//
//if ( child.specularColor !== undefined ) {
//
// var s = child.specularColor;
//
// material.specular.setRGB( s.r, s.g, s.b );
//
//}
//
//if ( child.transparency !== undefined ) {
//
// var t = child.transparency;
//
// // transparency is opposite of opacity
// material.opacity = Math.abs( 1 - t );
//
// material.transparent = true;
//
//}
//if ( /DEF/.exec( data.string ) ) {
//
// material.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
//
// defines[ material.name ] = material;
//
//}
parent.material = material;
}
if ( child.nodeType === 'ImageTexture' ) {
var textureName = /"([^"]+)"/.exec( child.children[ 0 ] );
if ( textureName ) {
parent.material.name = textureName[ 1 ];
parent.material.map = textureLoader.load( textureName[ 1 ] );
}
}
}
return;
}
for ( var i = 0, l = data.children.length; i < l; i ++ ) {
parseNode( data.children[ i ], object );
}
}
//getTree( lines )
parseNode( getTree( lines ), scene );
}
var scene = new THREE.Scene();
var lines = data.split( '\n' );
// some lines do not have breaks
for ( var i = lines.length - 1; i > 0; i -- ) {
// The # symbol indicates that all subsequent text, until the end of the line is a comment,
// and should be ignored. (see http://gun.teipir.gr/VRML-amgem/spec/part1/grammar.html)
lines[ i ] = lines[ i ].replace( /(#.*)/, '' );
var line = lines[ i ];
// split lines with {..{ or {..[ - some have both
if ( /{.*[{\[]/.test( line ) ) {
var parts = line.split( '{' ).join( '{\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
} else if ( /\].*}/.test( line ) ) {
// split lines with ]..}
var parts = line.split( ']' ).join( ']\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
}
line = lines[ i ];
if ( /}.*}/.test( line ) ) {
// split lines with }..}
var parts = line.split( '}' ).join( '}\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
}
line = lines[ i ];
if ( /^\b[^\s]+\b$/.test( line.trim() ) ) {
// prevent lines with single words like "coord" or "geometry", see #12209
lines[ i + 1 ] = line + ' ' + lines[ i + 1 ].trim();
lines.splice( i, 1 );
} else if ( ( line.indexOf( 'coord' ) > - 1 ) && ( line.indexOf( '[' ) < 0 ) && ( line.indexOf( '{' ) < 0 ) ) {
// force the parser to create Coordinate node for empty coords
// coord USE something -> coord USE something Coordinate {}
lines[ i ] += ' Coordinate {}';
}
}
var header = lines.shift();
if ( /V1.0/.exec( header ) ) {
console.warn( 'THREE.VRMLLoader: V1.0 not supported yet.' );
} else if ( /V2.0/.exec( header ) ) {
parseV2( lines, scene );
}
//console.log(scene);
return scene;
}
};
Best regards